Notes by Retraice. Re85: The Details (BEST-FIRST-SEARCH Part 4, AIMA4e pp. 73-74) retraice.com

Re85: The Details
(BEST-FIRST-SEARCH Part 4, AIMAd4e pp. 73-74)

retraice.com

Looking ahead at the code we’ll need.

An attempt to build a toy problem reveals unsatisfied dependencies; the need for a problem implementation with state space,
actions sets, transition model and action cost function; AIMA’s RouteProblem class and best_first_search function
implementations as guides; walking through the suites of each; the need for PriorityQueue and £ to order our search tree’s
frontier of nodes.

Air date: Saturday, 17th Dec. 2022, 10:00 PM Eastern/US.

expand (problem, node) dependencies

Node('failure', path_cost=math.inf) # Indicates an algorithm couldn't find a solution.
Node('cutoff', path_cost=math.inf) # Indicates iterative deepening search was cut off.

failure
cutoff

def expand(problem, node):
"Expand a node, generating the children nodes."

s = node.state # set variable s equal to the state attribute of the given node
for action in problem.actions(s): # for each action
sl = problem.result(s, action) # s1 is the state that results from applying given action to state s

cost = node.path_cost + problem.action_cost(s, action, sl1) # set variable cost to cost of going to si
yield Node(sl, node, action, cost) # generate child node given arguments s1, parent node, action applied, cost

run (Re85):

stspace = [1, 27, 88, 77, 11, 4, 32] # state space... needs to have actions
getToEleven = Problem(1, 11) # problem... ?? needs to subclass Problem and implement actions, result??

We need to implement a problem, with a state space, initial and goal states, actions sets, transition model and action cost function.

The RouteProblem example

class RouteProblem(Problem):
"""A problem to find a route between locations on a "Map’.
Create a problem with RouteProblem(start, goal, map=Map(...)}).
States are the vertexes in the Map graph; actions are destination states.

nun

def actions(self, state):
"""The places neighboring “state’.
return self.map.neighbors[state]

nnn

def result(self, state, action):
"""Go to the “action” place, if the map says that is possible.
return action if action in self.map.neighbors[state] else state

nnn

def action_cost(self, s, action, s1):
"""The distance (cost) to go from s to si."™"
return self.map.distances[s, s1]

def h(self, node):
"Straight-line distance between state and the goal."
locs = self.map.locations
return straight_line_distance(locs[node.state], locs[self.goal])

The AIMA implementation of RouteProblem, a subclass of Problem.

© 2022 Retraice, Inc. 1of2 Last revised: December 18, 2022

https://retraice.com
https://retraice.com

Notes by Retraice. Re85: The Details (BEST-FIRST-SEARCH Part 4, AIMA4e pp. 73-74) retraice.com

Looking ahead at BEST-FIRST-SEARCH implemented

def best_first_search(problem, f): # ***PROBLEM NOT DONE***
"Search nodes with minimum f(node) value first.”
node = Node(problem.initial) # done

frontier = PriorityQueue([node], key=f) # ***NOT DONE***
reached = {problem.initial: node} # create dict. reached: {'<problem initial state>': '<Node(problem.initial)>',}
while frontier: Starting with first node in frontier, ??7and continuing through queue??
node = frontier.pop() set node equal to the top node in frontier, removing it from queue
if problem.is_goal(node.state): check if the state of this node is the goal state of the problem
return node if it is, return the node as output and stop
for child in expand(problem, node): if not, expand the node and for each child node of it....
s = child.state set s equal to the child node's state
if s not in reached or child.path_cost < reached[s].path_cost: # if node is new or cheaper than known ones

#HHHEHHE

reached[s] = child # ?? add pair to reached dict. {'<child.state>': '<child node>',} ??
frontier.add(child) # add <child node> to frontier queue.<see ***CORRECTION*** below>
return failure # if goal state not found by while loop above, return failure and stop.

CORRECTION: During the livestream I said that after the while loop was done, we'd return to the newly updated
frontier. False. The frontier updates at the end of each loop through the while, then the while starts over, and if
the while never finds a goal state, it terminates and return failure is executed.

We’re also going to need a PriorityQueue, and £, an implemented evaluation function
that will prioritize our nodes for next expansion.

Other sources consulted during this livestream:

* Russell & Norvig (2020);

e Retraice (2022/12/14);

e Retraice (2022/12/15);

* Retraice (2022/12/16);

* http://aima.cs.berkeley.edu/figures.pdf;

* https://github.com/aimacode/aima-python/blob/master/search4e.ipynb;

e https://github.com/retraice/Re AIM A4e/tree/main/Re85—BEST-FIRST-Part-4.

References

Retraice (2022/12/14). Re82: What is a problem? (BEST-FIRST-SEARCH Part 1, AIMA4e pp. 73-74). retraice.com.
https://www.retraice.com/segments/re82 Retrieved 15th Dec. 2022.

Retraice (2022/12/15). Re83: A Problem Instantiated (BEST-FIRST-SEARCH Part 2, AIMA4e pp. 73-74). retraice.com.
https://www.retraice.com/segments/re83 Retrieved 16th Dec. 2022.

Retraice (2022/12/16). Re84: A Node Instantiated (BEST-FIRST-SEARCH Part 3, AIMA4e pp. 73-74). retraice.com.
https://www.retraice.com/segments/re84 Retrieved 17th Dec. 2022.

Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach. Pearson, 4th ed. ISBN: 978-0134610993. Searches:
https://www.amazon.com/s?k=978-0134610993
https://www.google.com/search?q=isbn+978-0134610993
https://lccn.loc.gov/2019047498

© 2022 Retraice, Inc. 20f2 Last revised: December 18, 2022

https://retraice.com
http://aima.cs.berkeley.edu/figures.pdf
https://github.com/aimacode/aima-python/blob/master/search4e.ipynb
https://github.com/retraice/ReAIMA4e/tree/main/Re85--BEST-FIRST-Part-4
https://www.retraice.com/segments/re82
https://www.retraice.com/segments/re83
https://www.retraice.com/segments/re84
https://www.amazon.com/s?k=978-0134610993
https://www.google.com/search?q=isbn+978-0134610993
https://lccn.loc.gov/2019047498

